

CARRIAGEWAY RECYCLING

In-Situ Recycling

- Single pass road train, Minimal HGV movements,
- 100% RAP, Different formulations for different road types
- Low scale but maximises carbon reduction 65-80%

Ex-Situ

- A centralised Recycling hub, which serves the whole county
- 100% RAP All excavated material comes to the hub
- Widescale and good carbon Reduction 40-50%

1 COLAS LTD

PRESENTERS

PAUL ACOCKNational Technical
Manager

JOE KIMBERLEY Innovation Manager

EMMA MURRAYEnvironment Manager

COLAS GROUP

GLOBAL PRESENCE IN OVER 50 COUNTRIES ON 5 CONTINENTS

OUR GLOBAL ACTIVITIES

>) MATERIALS

>) SPAC

COLAS GLOBAL INFRASTRUCTURE

DENSE INTERNATIONAL NETWORK OF PRODUCTION, STORAGE & RECYCLING UNITS

463 quarries and gravel pits (in operation)

174 concrete plants

147 emulsion plants

518 asphalt plants 420 recycling units

1 bitumen refinery located in Kemaman, Malaysia

71 bitumen storage terminals

COLAS UK

CSR STRATEGY

Shape an **exemplary culture** of **ethics** and **compliance**

Offer our **customers and users** solutions that meet the challenges of **sustainable development** in local communities

Build a responsible supply chain rooted in sustainable performance

Foster a stronger health and safety culture to protect lives

Roll out a **low carbon** and **biodiversity** strategy to **preserve the planet**

Promote circular economy solutions to preserve natural resources

Attract, develop and retain talent through managerial excellence

Reduce the **impact** of our activities to bolster **acceptability**

LOW CARBON AND BIODIVERSITY ROADMAP

29

commitments

Integrating climate change issues into our **Group strategy**

EX: new lines of business, **Climate Fresk**

Reduce the carbon intensity of our direct emissions

Electrical vehicles Green hydrogen

Develop and promote lowcarbon solutions

> Low carbon concrete Recycol

Optimize our carbon accounting of activities

Worksite carbon calculator

Reduce our clients/users emissions

Mobility by Colas

Promote biodiversity into our activities

Hedge plantations

2

DECARBONISING THE ROAD NETWORK

CHALLENGING THE EMERGING TRENDS

Cradle to Gate evaluations – (Global values)

		Current	Target	Variation	Qty	in	npact
						unit	total
Increase warm mix %	30°C reduction	15,6%	50,0%	34%	12 900 000	2,7	34 830
Control of warm mix temperature	10°C reduction			16%	5 850 000	0,9	5 265
Control of hot mix temperature	10°C reduction			50%	18 750 000	0,9	16 875
Increase RAP	Same W%	16,0%	30,0%	14%	37 500 000	0,17	89 250
Reduce material moisture content				-0.7%	37 500 000	1,96	53 802
Total impact							

	Kg CO2/t	t CO2
Current carbon footprint	32,5	1 218 750
Target carbon footprint	27,2	1 018 728
Potential savings	-16,4%	

	CUF	RRENT	TA	RGET	
Aggregates	1%	50%	1%	42%	
Sand	3%	34%	2%	28%	
RAP	5%	16%	2%	30%	
	Average W%	2,3%	-	1,6%	
			-		

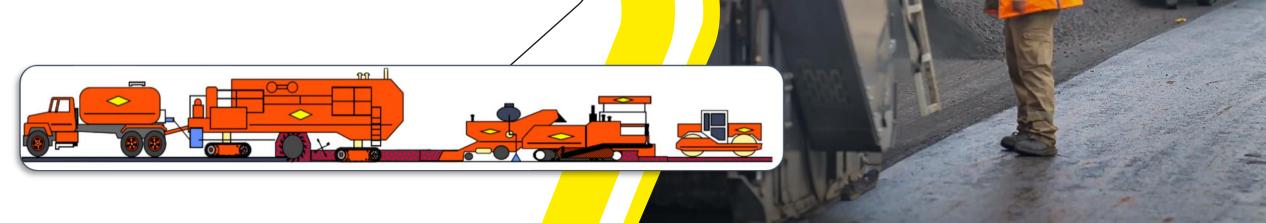
Reference quantity
37,500,000
Tons of asphalt mix

All those efforts will represent

RAP – RECYCLED ASPHALT (AGGREGATE) PLANINGS

Asphalt is 100% recyclable at its end of life and can be incorporated back into new asphalt.

Using these recycled asphalt planings (RAP) in the asphalt production process avoids using virgin aggregates, protecting natural resources for future generations.


Types of RAP can include:

- Asphalt Planings
- Recycled Aggregate rail ballast
- Crushed Concrete
- Crushed Brick

RECYCOL

- Recycling 100% of the binder course, cold and in-situ
- Emulsion based flexible binder course
- With cement for accelerated curing + additional rigidity
- Typically ~70% carbon saving Cheshire ~65% saving
- 20+ years of experience in France

A41 CHESHIRE WEST

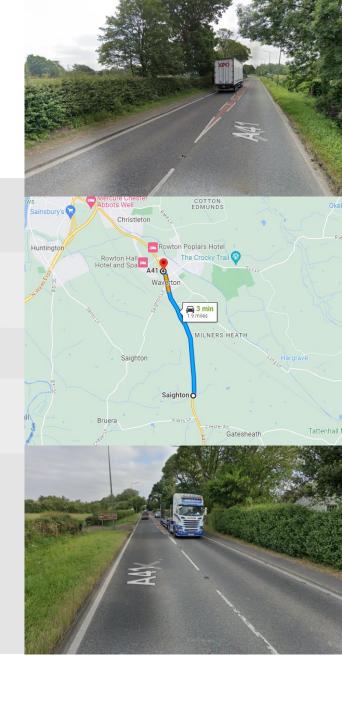
> A41 RESURFACING IN 2023

2km of the A41 - 5 days full road closure - 3rd October - 7th October

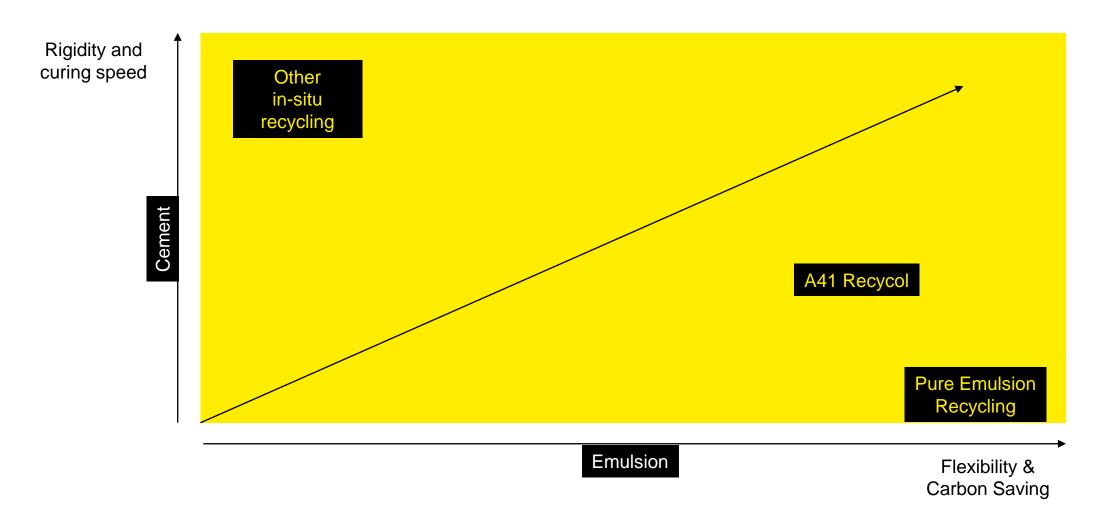
PROCESS STEPS:

Surface course removal

- depth 40mm


Binder Course Recycling @100%

- depth 70mm

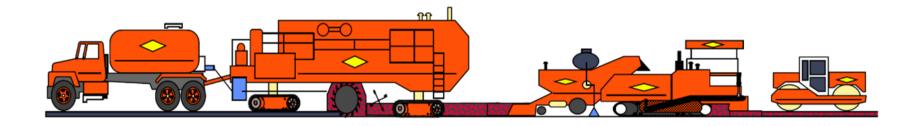

Surface course relaid as SMA - depth 40mm

> EVALUATION -

Falling Weight Deflectometer, core samples, pavement and mix designs, Life-cycle Analysis carbon evaluation

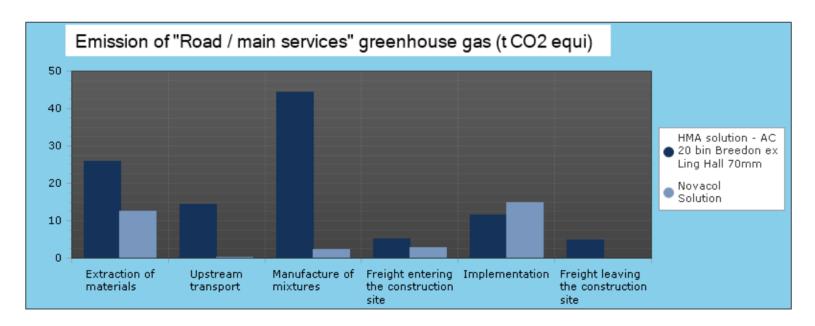
EMULSION VS CEMENT

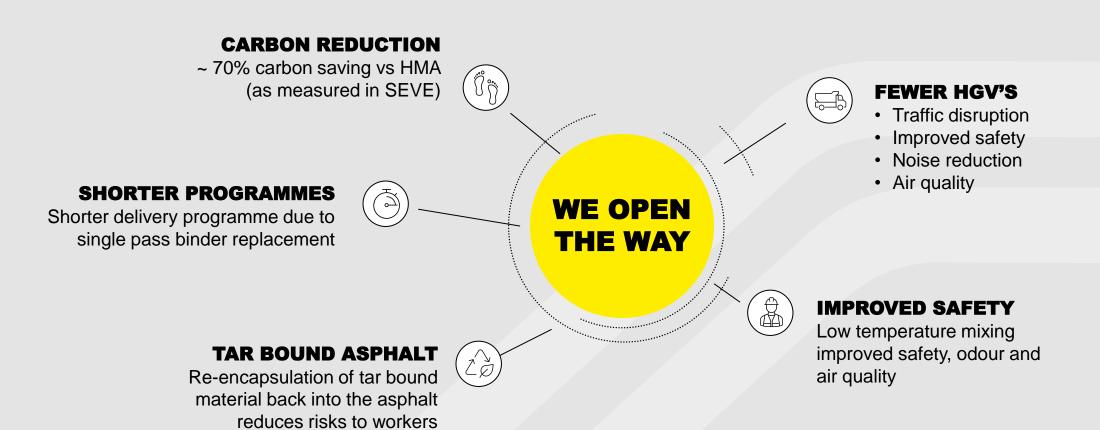
RECYCOL ROUTE MAP



INDEPENDENT EVALUATION

Department for Energy Security & Net Zero


SEVE ECO-COMPARATOR TOOL



RECYCOL CARBON EVALUATION

CO2		Emissions of greenhouse gases (t CO2 eq)								
		Materials extraction	Upstream transportation	Manufacture of mixtures	Freight entering the site	Implementati on	Freight leaving the site	Total	Comparison / Base	
HMA solution - AC 20 bin Breedon ex Ling Hall 70mm	Roads and Networks	26,0	14,4	44,4	5,0	11,4	4,9	106,1		
Novacol Solution	Roads and Networks	12,6	0,5	2,3	2,7	14,9	0,0	33,0	-68,9 %	

BENEFITS

STANDARDS FOR HIGHWAYS WORKS

EXISTING STANDARDS

SHW 947 - In situ cold recycled bitumen bound material

SHW 948 - Ex situ cold recycled bitumen bound material

INCOMING PROPOSALS FOR 2024

SHW 949 – In-situ Recycling (Down Cut process)

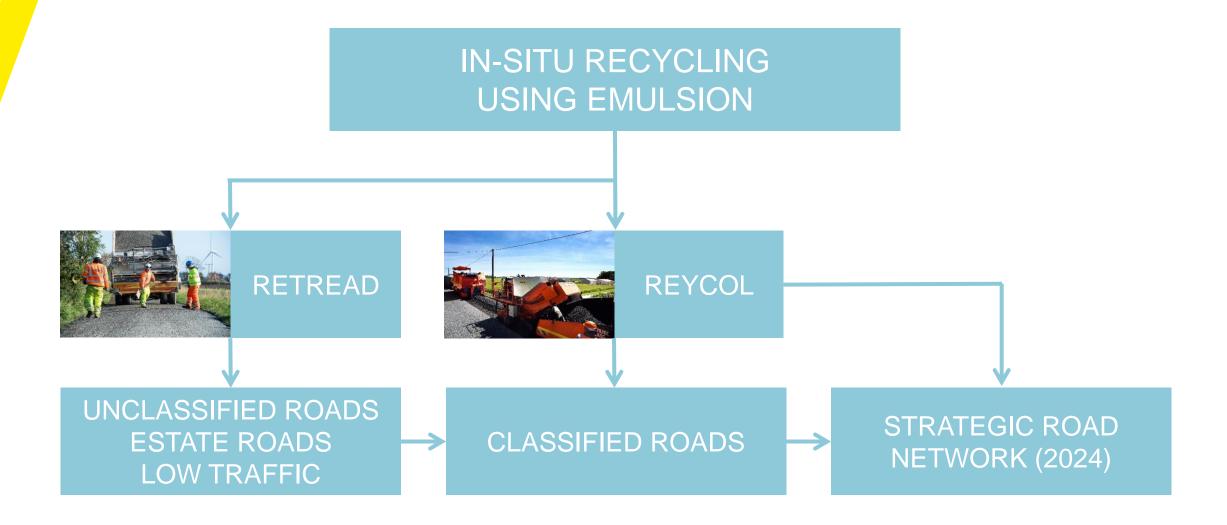
947 (05/18) In Situ Cold Recycled Bitumen Bound Material

(05/18) **Scope**

- 1 (05/18) In situ cold recycled bitumen bound material shall be designed and produced to form the foundation or main structural layer of the road pavement. The primary aggregate source shall be obtained by cold pulverisation of all, or part, of the existing road structure. The primary binder (stabilising agent) shall be a foamed bitumen, with cement or lime as an adhesion agent. The aggregate grading may be adjusted by the addition of a filler. Lime may also be used to modify any cohesive sub-grade soil incorporated in the pulverised layer.
- 2 (05/18) Prior to commencing the pulverisation and stabilisation works, the Contractor shall demonstrate, to the satisfaction of the Overseeing Organisation, using the results of mix design procedures described in sub-Clauses 58 to 65 of this Clause, that the existing pavement materials in the sections of the works defined in contract specific Appendix 7/18 are capable of being recycled by pulverisation to form the primary aggregate component of an in situ cold recycled bitumen bound material which can meet the specified end-product performance requirements.

(05/18) Component Materials

(05/18) Aggregates and Fillers


- 3 (05/18) The pulverised pavement material and any supplementary aggregate and/or filler shall normally be granular material with not less than 5% and not more than 20% passing the 0.063 mm sieve (Zone A graded material). Approval for use of pulverised granular material containing up to 35% passing the 0.063 mm sieve (Zone B graded material) shall require confirmation by the Overseeing Organisation, subject to the results of the mixture design procedures described in sub-Clauses 58 to 65 of this Clause.
- 4 (05/18) The pulverised granular material shall contain not more than 2% of organic matter as determined in accordance with BS 1377-3 clause 3.

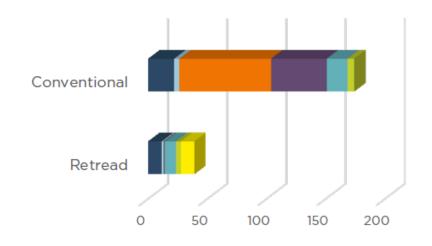
(05/18) Bitumen Binder

- 5 (05/18) The primary binder shall be foamed bitumen. The base bitumen shall comply with BS EN 12591 and shall be 100/150 penetration grade.
- 6 (05/18) Other than foaming agent(s), bitumen modifiers shall not be used unless approved by the Overseeing Organisation for special purposes or conditions.

IN-SITU RECYCLING

RETREAD - LOW CATEGORY RURAL ROADS

Retread sites before & after treatment



RETREAD - CO2 EVALUATION

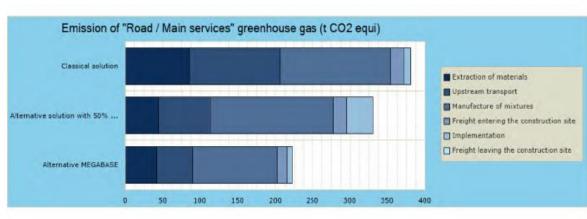
Structure	Binder	Aggregate	Upstream Transport	Manufacture	Downstream Transport	Laying	Retread Equipment	Total
Conventional	22.0	4.4	77.5	46.9	17.6	5.8	-	174.2
Retread	11.5	1.6	0.2	0.7	9.4	4.2	11.5	39.1

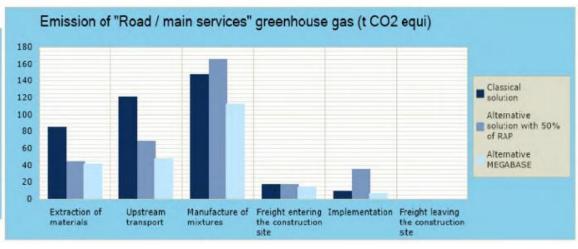
- Binder
- Aggregates
- ■Upstream transport
- Manufacture
- Downstream transport
- Laying
- Retread Equipment

USING RETREAD, TOTAL GREEN HOUSE GASES USED WAS A 77.37% SAVING COMPARED TO CONVENTIONAL SURFACING

MEGABASE - RECYCLED AGGREGATES

Characteristics (usual values)	MÉGABASE® 0/3l.5 mm 0/40 mm
Gyratory Shear Press Test (NF EN 12 697-31) Maximum voids at 120 gyrations, in %	9.0
Duriez Test (NF EN I2 697-I2) Water sensitivity (immersion/Compression), in %	≥ 75
Rutting Test (NF EN I2 697-22) (Large Model, 60°C) Ruts at 30 000 cycles, in % Ruts at 100 000 cycles, in %	≤ 6.5 ≤ 7.5
Complex Modulus Test 15°C, 10Hz (NF EN 12 697-62) E , in MPa	≥ II 000
Reversed Bending Fatigue Test 10°C, 15 Hz (NF EN 12 697-24) & in µstrain	≥100


Megabase® Strong granular framework using reclaimed rail ballast


- High mechanical performance Dedicated to areas with extreme loads (ports, bus stops, intermodal platform, industrial sites)
- Economical asphalt mix
- Low carbon

Basic solution	Alternative solution				
360 mm AC 32	265 mm MEGABASE				
50 MPa	50 MPa				
265 mm AC 32	190 mm MEGABASE				
50 MPa	50 MPa				
200 mm AC 32	140 mm MEGABASE				
50 MPa	50 MPa				
165 mm AC 32	110 mm MEGABASE				
50 MPa	50 MPa				

MEGABASE - CO2 EVALUATION

		Emissions of greenhouse gases (t CO2 eq)									
C	202	Materials extraction	Upstream transportation	Manufacture of mixtures	Freight entering the site	Implementation	Freight leaving the site	Total	Comparison Base		
Classical solution	Roads and Networks	85,0	121,1	147,3	18,0	9,4	0,0	380,8			
Alternative solution with 50% of RAP	Roads and Networks	44,5	68,2	164,8	18,0	35,2	0,0	330,7	-13,1 %		
Alternative MEGABASE	Roads and Networks	42,0	47,6	112,2	13,6	6,7	0,0	222,2	-41,7 %		

DECARBONISATION – OUR INTERNATIONAL APPROACH

An industry Leader on Sustainable Road Solutions

- World's 5th biggest Recycler
- Valorcol
- Vegecol
- Wattway
- Eco5
- Asset Management
- Mobility
- Working with industry boards Live Labs etc

- A growing market
- A range of solutions different blends
- > A blend of In-situ and Ex-situ
- Any Questions?

